IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Knowledge and Data Engineering (TKDE) is an archival journal published monthly designed to inform researchers, developers, managers, strategic planners, users, and others interested in state-of-the-art and state-of-the-practice activities in the knowledge and data engineering area. Read the full scope of TKDE

Expand your horizons with Colloquium, a monthly survey of abstracts from all CS transactions!

From the January 2019 issue

Finding Optimal Skyline Product Combinations under Price Promotion

By Xu Zhou, Kenli Li, Zhibang Yang, and Keqin Li

Featured Article Nowadays, with the development of e-commerce, a growing number of customers choose to go shopping online. To find attractive products from online shopping marketplaces, the skyline query is a useful tool which offers more interesting and preferable choices for customers. The skyline query and its variants have been extensively investigated. However, to the best of our knowledge, they have not taken into account the requirements of customers in certain practical application scenarios. Recently, online shopping marketplaces usually hold some price promotion campaigns to attract customers and increase their purchase intention. Considering the requirements of customers in this practical application scenario, we are concerned about product selection under price promotion. We formulate a constrained optimal product combination (COPC) problem. It aims to find out the skyline product combinations which both meet a customer’s willingness to pay and bring the maximum discount rate. The COPC problem is significant to offer powerful decision support for customers under price promotion, which is certified by a customer study. To process the COPC problem effectively, we first propose a two list exact (TLE) algorithm. The COPC problem is proven to be NP-hard, and the TLE algorithm is not scalable because it needs to process an exponential number of product combinations. Additionally, we design a lower bound approximate (LBA) algorithm that has a guarantee about the accuracy of the results and an incremental greedy (IG) algorithm that has good performance. The experiment results demonstrate the efficiency and effectiveness of our proposed algorithms.

download PDF View the PDF of this article      csdl View this issue in the digital library

Editorials and Announcements


  • TKDE now offers authors access to Code Ocean. Code Ocean is a cloud-based executable research platform that allows authors to share their algorithms in an effort to make the world’s scientific code more open and reproducible. Learn more or sign up for free.
  • We are pleased to announce that Xuemin Lin, a Scientia Professor in the School of Computer Science and Engineering at the University of New South Wales, Australia, has been named the new Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering starting in 2017.


Guest Editorials

Reviewers List

Annual Index

Access recently published TKDE articles

RSS Subscribe to the RSS feed of recently published TKDE content

mail icon Sign up for e-mail notifications through IEEE Xplore Content Alerts

preprints icon View TKDE preprints in the Computer Society Digital Library

Computing Now